煤炭工程 ›› 2025, Vol. 57 ›› Issue (8): 188-195.doi: 10. 11799/ ce202508025

• 研究探讨 • 上一篇    下一篇

基于多项式拟合与LSTM的分布式光伏功率短期预测

蒋磊,李钰义,祁坪,朱岩坤   

  1. 1. 中国矿业大学(北京)人工智能学院,北京 100083

    2. 应急管理部研究中心,北京 100013

  • 收稿日期:2024-11-07 修回日期:2024-12-20 出版日期:2025-08-11 发布日期:2025-09-11
  • 通讯作者: 朱岩坤 E-mail:yankzhu@sina.com

Short term prediction of distributed photovoltaic power based on polynomial fitting LSTM

  • Received:2024-11-07 Revised:2024-12-20 Online:2025-08-11 Published:2025-09-11
  • Contact: Yankun NOZhu E-mail:yankzhu@sina.com

摘要:

针对新建分布式光伏发电站数据量不足导致的预测困境,提出了一种基于多项式拟合-LSTM的混合预测方法。该方法将传统的多项式拟合技术与深度学习模型相结合,通过引入残差修正机制进一步优化预测结果,并对天气和功率数据进行预处理,通过皮尔逊相关系数分析筛选出具有高相关性的特征指标。在预测阶段采用多层次策略:首先分析近期功率数据并使用多项式拟合建立归一化趋势模型;其次构建LSTM峰值预测模型以获取目标日的功率峰值,将两者相乘得到初步预测结果;最后,通过构建LSTM残差预测模型对初步预测值进行修正,从而得到最终的功率预测曲线。以某实际运行的分布式光伏电站为例进行验证,结果表明,该混合预测方法能够有效提升新建光伏电站的预测精度,为解决数据量有限条件下的光伏发电功率预测问题提供了一种切实可行的解决方案。

关键词:

光伏发电 , 功率预测 , 多项式拟合 , 长短期记忆网络

Abstract:

In response to the prediction dilemma caused by insufficient data for newly built distributed photovoltaic power stations, this paper proposes a hybrid prediction method based on polynomial fitting-LSTM. This method first preprocesses the weather and power data, and selects characteristic indicators with high correlation through Pearson correlation coefficient analysis. In the prediction stage, the method adopts a multi-level strategy: first, analyze the recent power data and use polynomial fitting to establish a normalized trend model; secondly, build an LSTM peak prediction model to obtain the power peak of the target day, and multiply the two to obtain a preliminary prediction result; finally, correct the preliminary prediction value by building an LSTM residual prediction model to obtain the final power prediction curve. Taking a distributed photovoltaic power station in actual operation as an example for verification, the results show that the hybrid prediction method can effectively improve the prediction accuracy of newly built photovoltaic power stations, and provide a practical solution to the problem of photovoltaic power generation power prediction under the condition of limited data. This method combines traditional polynomial fitting technology with deep learning models, and further optimizes the prediction results by introducing a residual correction mechanism. Key Words:Photovoltaic power generation; Power prediction; Polynomial fitting; Long short-term memory network

中图分类号: